
In this lecture, we will start the final topic for this module on feedback control.  This 
is required for you to design the self-balancing feature of the Segway.

The concept of feedback is general.  It is useful not only in our specific application, 
but it is applied in many other situations and environments.  For example, you 
remember last year’s Electronics  1 module, where you used an op amp to amplify 
microphone signal.  We used feedback to fix the gain of the amplifier by choosing 
the resistor values.  The fundamental principle used there is feedback – it is applied 
in the op amp circuit to fix the gain of the amplifier, no matter what the op amp 
characteristic is, provided that there is a high gain in the signal path.
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Before I start this lecture, let us watch a short video explaining what is control 
engineering:

You can find this video on the link:
https://www.youtube.com/watch?v=Im88eVfkeBo&t=44s
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What is control engineering? (a video)



You have in the past been applying control to the DC motors, but without feedback.  
The potentiometer provide a desired motor speed. This is also known as the “set 
point”.  Here are what we did in Lab 5:

1. The Pybench board runs a program in Python in order to drive the motor through 
a PWM signal.  The microcontroller running the Python program is the controller.  

2. Then we use the TB6612 H-bridge chip to drive the motor. This is the actuator.

3. The output of the driver chip drives the motor directly.

4. Finally, we used the Hall effect sensors to measure the speed of the motor to 
provide an actual speed.  This is the sensor.

The motor is what we want to control.  In control terminology, the motor is known 
as the “system”, the “process” or the “plant”.

This system is subjected to “open-loop” control because the drive signal is 
independent of the output – there is no looping back of information to the drive 
input.

Finally, in our system, we are trying to control the speed of the motor.  Therefore 
motor speed is the control variable.
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Driving the DC motors – Open-loop control

 Driving the DC motors using Pybench in Lab 5 is known as “open-loop control”
 Potentiometer set the required speed (as voltage value)
 The Pybench board running Python produces control signals including direction (A1, A2) 

and PWM duty cycle. It acts as the controller
 The TB6612 H-bridge chip drives the motors – it is the actuator
 The motor is the thing being controlled – we call this “the process” or ”the plant”
 The Hall effect sensors detect the speed and direction of the motor
 Problem: error in the desired speed setting vs the actual speed you get



Such a system has problems.  As you have found out during the lab sessions, the 
two motors may be driven by the same PWM values, but the speed of the motors 
may be very different.  

Open-loop control relies on known system behaviour. Any change in system 
behaviour (i.e. the process) will result in error in the outputs of the control 
variables.

However, open-loop control is not always bad.  If the system characteristics is well 
defined and is not changing over time or under different operating conditions, open-
loop control is easy to implement and will not subject to a major problem inherent 
in feedback or closed-loop control, which is the possibility of instability.  Open-loop 
control will not cause instability, while feedback control could.
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Problem 1: Uncertainty in system characteristic

 There are many problems with open-loop control.
 First, the two motor may not respond in the same way to the drive input signal PWM_A 

and PWM_B. (For example, the two gear boxes may present different resistance to the 
motor, and the magnet inside the motors may have different strength.)

 The consequence is that the two motors are not balanced and the Segway will not go 
in a straight line.

 This is an example of the variation and uncertainty in the system characteristic. In this 
case, the steady-state behaviour of each motor may be different.  It results in the actual 
speed of the two motors being different.

 One could use different gains to drive PWM_A and PWM_B to compensate for the 
difference in system characteristic.  But this does not solve all the problems.



There are two further major problems with open-loop control.

The system (i.e. the motor) may experience disturbances or perturbations.  
Furthermore, the sensor may have noise associated with it. 

These two factors p(t) and n(t) will affect the output behaviour.

A closed-loop system has the potential of mitigating against these undesirable  
factors.
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Problem 2: Disturbance and Noise

 Two other major problems exist:
1. Perturbation – the motor may go on uneven surface or there may be some 

obstacles in the way;
2. Sensor noise - The Hall effect sensors may not produce perfectly even pulses, 

the magnetic poles in the cylindrical magnet may not be evenly spaced.
 These two other factors will DIRECTLY affect the response of the system (i.e. 

the speed of the motor).
 Open-loop control cannot mitigate against these problems in any control 

systems.  
 We need to use feedback, or closed-loop control in order mitigate these 

problems.



Here is a generic closed-loop control system employing feedback.

The control variable is detected using the sensor, producing the sensed value s(t).
The sensed value is compared with the set point r(t) (i.e. the reference value) to 
produce the error signal e(t).

The error signal e(t) is used as input to the controller (such as an amplifier) in order 
to provide the signal for the actuator which drives the system.

The key to this feedback control system is that the system is driven by the controller 
that responses to the difference between what is desired r(t) and what actually 
happens at the output y(t) measured by the sensor.

The purpose of this loop back (closed-loop feedback) is that by choosing or 
designing a proper controller, we can:
1. Provide regulation function, i.e. make the control variable tracks the set point.
2. Make the closed-loop system immune to variations in the process (e.g. motor 

characteristics).
3. Make the closed-loop system less prone to disturbances or perturbations and 

reduce the effect of noise.
4. Change the system dynamic behaviour such as its step response to what you 

want.
5. Make an inherently unstable system (such as the Segway) stable.
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Closed-loop control with feedback

 In a closed-loop control system, we use a sensor to detect the parameter that we 
wish to control.  This parameter is also known as the “control variable”.

 We obtain the error signal e(t) by subtracting the actual parameter from the desired 
parameter (called the “set-point”).

 The controller then produces a drive signal to the actuator and to the plant 
depending on this error signal.

y(t)



Note that we usually use negative feedback in order to control a system.  We always 
subtract the output variable (or some form of feedback value) from the set point, 
not add.  

If you add instead of subtract, the system will go unstable or goes to infinity – it 
would not settle to a final value.  This is called positive feedback.

Show here is a positive feedback system modelling wage inflation – that’s why in a 
normal economy, the wages always increase and will not stay at a steady-state level.

We only consider negative feedback in this module.
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Negative vs Positive feedback
 Negative feedback example:  sensor of the control variable is SUBTRACTED from the 

desired parameter.  Here is a control system for dispensing insulin to a diabetic patient.
 Control system generally uses negative feedback.

Insulin 
depensing 

system

 A system could have positive feedback.  Here is a model for wage inflation.  Such a 
system will have its control parameter ever-increasing.  Such a system is not stable, 
meaning that it never reaches a stable final value. 

Wage 
inflation 
model



We must now add two other real-life factors into our closed-loop system model. 

Here we add the perturbation or disturbance p(t) just before the process.  Finally 
we add the noise signal n(t) injected into the sensor.  These will have impact to the 
final output y(t) (as we will see later).
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Closed-loop system with disturbance & sensor noise

 Again all systems are not ideal and there can be perturbation and sensor noise.
 These are added to the insulin dispensing system which is under closed-loop control



So far, we have drawn our system as blocks of functions.  In order to do analysis on 
such a system, we must model it mathematically.  That’s why you need to learn 
modeling of systems earlier.

The technique we use to analyse system in order to design a controller for it in a 
closed-loop fashion is through Laplace transform.

Here we assume that the actuator and the process (or system, or plant) together 
has a system transfer function in the Laplace domain of G(s).

The sensor in the feedback path may have a transfer function of H(s).

Our goal is to design a controller Gc(s) which, when we close the loop, will make 
the system behaves in the way we want.

We often simplify the system by assuming that it has no disturbance, and the sensor 
has no noise (P(s) = N(s) = 0), and finally H(s) =1.  Then we get the simplified model 
as shown.  In this model, we basically have the process G(s) and the controller Gc(s) 
which we need to design, and connected in a negative feedback configuration.
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 We can represent a closed-loop system shown in previous slide (in time domain) in a 
mathematical form in the Laplace domain.

Block diagram model of a closed-loop system

 G(s) is the transfer function of the system 
we wish to control. 

 Gc(s) is the controller that we design in s-
domain.

 H(s) is the sensor characteristic.  

 R(s) is the desired parameter (e.g. a dc value, a step function or a ramp function).
 Y(s) is the actual output variable under control.
 We can simplify the system by assuming that H(s) = 1, and both perturbation and 

sensor noise are neglected for now (i.e. assumed to be zero).     

Laplace 
Transform

Simplified
model



Before I move on, here is good YouTube video comparing the open-loop and the 
closed-loop system.

You can find this video on the link:
https://youtu.be/zjDM1qZaJ6Y

(See course webpage.)
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A video on open- & closed- loop systems



Before we move on, let use consider how to take the block diagram in the Laplace 
domain and perform some transformations in order to achieve a simplified diagram 
and to derive the system level transfer function.

There are 6 transformations.  However, transforms 1 and 6, highlighted in red, are 
the IMPORTANT ONES.

Here is shown transforms 1 to 4. They are pretty obvious.
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 Here are some useful transformation in s-domain that helps with complexity reduction:

Block diagram transformations (1)



The most important transform is number 6 – transforming a generic feedback loop 
into a transfer function.

What I have shown here is the derivation of this transformation.  Make sure that 
you are able to do the derivation yourself.

The transfer function for a feedback system with forward gain G(s) and feedback 
gain H(s) is:

𝐺(𝑠)
1 + 𝐺 𝑠 𝐻(𝑠)

This equation is one of the very few that are worth memorizing!
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Block diagram transformations (2)

H  X2

X2/G 𝑋! −𝐻×𝑋" =
𝑋"
𝐺

⟹ 𝑋!=
#!
$

 +𝐻×𝑋"
⟹𝐺𝑋!= (1 + 𝐺𝐻)𝑋"

⟹𝑋"=
𝐺

1 + 𝐺𝐻 𝑋!



Now let me go through step-by-step how a complex system block diagram can be 
reduced to a transfer function in the s-domain using an example.

Make sure that you can follow each step.
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Example of system reduction by transformation (1)

=
1 & 6



Keep following the steps.
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Example of system reduction by transformation (2)

=
1 & 6



Here we show how the complex block diagram is reduced to the expression shown.  
Each term in the expression Gx and Hx is a transfer function block in the original 
diagram.  

In practice we will not be dealing with any system that is as complex as the one 
shown here. Nevertheless, it is worth learning the technique to do such 
simplification for ANY system.
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Example of system reduction by transformation (3)

1 & 6

=



Let us apply these transformation technique to our closed-loop system of the motor 
or the insulin pump.

We can easily derive (using 1 and 6) that the transfer function from R(s) to Y(s) is as 
shown here.  

We will see in the next lecture why this is significant.
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A generic closed-loop control system

 The transfer function of the closed-loop control system from input R(s) to output Y(s) is (applying 
transforms 1 & 6):

𝑌(𝑠)
𝑅(𝑠)

=
𝐺%(𝑠)𝐺(𝑠)

1 + 𝐺% 𝑠 𝐺 𝑠 𝐻(𝑠)

 Let us now consider a generic close loop system such as the motor or insulin pump control as 
shown here.



Loop gain is an important concept.  

If we break the feedback loop at just BEFORE we subtract the feedback signal from 
the desired input R(s), the gain of the system around the loop (without feedback) is 
known as loop gain.  In the generic system shown here, the loop gain:

   L(s) = Gc(s) G(s) H(s).

You will find this quantity popping up all over the place in any feedback systems.  In 
many cases, the higher the loop gain, the “better” is the control system.  However, 
increasing the loop gain also make the system more prone to instability (i.e. it can 
become oscillatory).
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The concept of loop gain L(s)

 From the previous slide, we have the transfer function of a close-loop system as:

 The quantity:                                          is known as loop gain of the system.
 It is the transfer function (gain) if you break the feedback loop at the point of feedback, and 

calculate the gain around the loop as shown.
 This quantity turns out to be most important in a feedback system because it affects many 

characteristics and behaviour in such a system.
 We will consider why such a closed-loop system with feedback is beneficial in the next 

Lecture.

𝐿 𝑠 = 𝐺% 𝑠 𝐺 𝑠 𝐻(𝑠) 

𝑌(𝑠)
𝑅(𝑠) =

𝐺%(𝑠)𝐺(𝑠)
1 + 𝐺% 𝑠 𝐺 𝑠 𝐻(𝑠) =

𝐺%(𝑠)𝐺(𝑠)
1 + 𝐿(𝑠)



Here is the feedback system we used in the last lecture.  The controller is under our 
control. The purpose is that with the negative feedback, we can make the system 
behaviour in a better way than an open-loop system.

If you derive the transfer function from R(s) to Y(s), you find that the transfer 
function of this closed-loop system becomes:

Provided that the loop gain L(s) is large compared to 1, this give us  a value of 1 (for 
all s values).  That means the output Y(s) is tracking the set point (desired control 
variable value) R(s) because of this feedback loop.

This is an important result.  The closed-loop system behaviour is now INDEPENDENT 
of G(s), the system we are controlling, as long as the loop gain L(s) = Gc(s) G(s) is 
large as compared to 1.

𝑌(𝑠)
𝑅(𝑠)

=
𝐺0(𝑠)𝐺(𝑠)

1 + 𝐺0 𝑠 𝐺 𝑠
=

𝐿(𝑠)
1 + 𝐿(𝑠)
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Feedback makes system insensitive to G(s)

 Let us now assume that H(s) = 1 to simplify things.
 We have seen from the last lecture that the transfer function of this closed-loop system is:

 If                                                     then this term approaches 1!!
 In other words, the actual output Y(s) (e.g. motor speed) will track the desired input R(s) 

independent of G(s), our system behaviour:

𝑌(𝑠)
𝑅(𝑠) =

𝐺%(𝑠)𝐺(𝑠)
1 + 𝐺% 𝑠 𝐺 𝑠 =

𝐿(𝑠)
1 + 𝐿(𝑠)

𝐿 𝑠 = 𝐺% 𝑠 𝐺 𝑠 ≫ 1 

!(#)
%(#)

≈ 1   if 𝐺% 𝑠 𝐺 𝑠 ≫ 1 



Now let us consider the error e(t) or E(s) in the s-domain.  Ideally you want Y(s) to 
be exactly R(s), that is, what we set as desired, is what we get.
However, in any systems, there may be an error.
         E(s) = R(s) – Y(s) = R(s) – E(s) Gc(s)G(s) = R(s) – E(s) L(s),   where L(s)=loop gain
          Hence,           E(s) = R(s) x [1/1+L(s)].

Let us now consider the case that the input r(t) is a step function with a step value 
of A, i.e. r(t) = A u(t) at t = 0.
This is modelling the case that you may be controlling a robot arm to move from 
one point to any other at time = 0, or changing the motor speed from one to an 
other.

Remember from earlier lecture that the Laplace transform of A u(t) is:

The question is: after such as step, what will the output eventually settle down to? 
In order to answer this question, we have to use some important theorem, known 
as the final-value theorem, which states:

I don’t want to prove this, but it allows you to computer the final value of a signal 
using only the s-domain equations (i.e. the transfer function).  As shown in the slide 
here, the final value of the error e(t) = A / (1 + L(0)), where L(0) is the loop gain at 
s=0, or the DC gain of L(s).
In other words, the steady-state error (when s=0) is A reduced by a factor of (1+L(0))

𝑅 𝑠 = 𝐿 𝐴𝑢 𝑡 = 𝐴
1
𝑠

lim
&→(

𝑒 𝑡 = lim
#→)

𝑠𝐸 𝑠  
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Feedback yields small steady-state error e(t)

 Let us suppose the input to the system is a step at t=0 with a magnitude of A: 𝑟 𝑡 = 𝐴𝑢 𝑡 .

 Then   𝑅 𝑠 = 𝐴 !&  (because Laplace transform of u(t) is 1/s)
 We know that in this system, y(t) will track r(t) from the previous two slides.  The question is: 
 “After transient has died down, what is error e(t)?”
 To calculate this steady-state error, we need to use the final-value theorem, which states:

 Therefore, 

 So the steady-state error is reduced by a factor of (1 + L(0))

lim
'→)

𝑒 𝑡 = lim
&→*

𝑠𝐸 𝑠 = lim
&→*

𝑠
1

1 + 𝐿 𝑠 𝐴
1
𝑠 =

𝐴
1 + 𝐿(0)  

lim
'→)

𝑒 𝑡 = lim
&→*

𝑠𝐸 𝑠  



Let us now consider the impact of closed-loop on perturbations P(s) or p(t).

This is added as shown in the block diagram.  
We are interested in the relationship between Y(s), the output, and the perturbation 
P(s).
To work this out, there is a good trick – always evaluate at the signal point AFTER 
the summer.  In this case, it is the input to the system G(s). Let us call this T(s).

Some simple algebra yield the answer: 

If we did not have closed-loop, but have a simple open-loop system, then Y(s) = 
G(s)P(s).  That is, the perturbation is passed to the output through our system as-is.

However, putting the system G(s) in this feedback loop, we reduce this effect by the 
factor                           .    Note that this factor comes up all the time!  

If loop gain L(s) is relatively large as compared to 1, then the perturbation is reduced 
by the factor of L(s) at all value of s.

𝑌 𝑠 =
𝐺(𝑠)

1 + 𝐿 𝑠
𝑃 𝑠

1
1 + 𝐿 𝑠
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Feedback reduces impact of perturbations

 Let us put back the perturbation p(t) to the system.
 Assume R(s) = 0, and the effect of perturbation P(s) on output Y(s) can be found by considering 

the expression for T(s) at the input to our system under control:

 In open-loop, 

 In closed-loop, the disturbance is reduced by the factor: 

𝑇 𝑠 = 𝑃 𝑠 − 𝑇 𝑠 𝐺 𝑠 𝐺+ 𝑠

⟹ 𝑇 𝑠 =
1

1 + 𝐿 𝑠
𝑃 𝑠 =

𝑌(𝑠)
𝐺(𝑠)

⟹ 𝑌 𝑠 =
𝐺(𝑠)

1 + 𝐿 𝑠
𝑃 𝑠

1
1 + 𝐿 𝑠

H(s) = 1

𝑌 𝑠 = 𝐺(𝑠)𝑃 𝑠



Now let us put into the system the sensor noise n(t) or N(s).
With some manipulation, we found that:

Unfortunately the output is VERY MUCH affected by the noise.  If L(s) is large, as we 
have assumed in previous slides, then N(s) is more or less passed to the output Y(s).

Fortunately, in many practical systems, N(s), the noise, generally is at high 
frequency.  If G(s) or Gc(s) has low gain at high frequency (lowpass filter), L(s) << 1 at 
high s, then,

Since L(s) << 1, N(s) can be suppressed.

  

𝑌 𝑠 = −𝐿 𝑠 𝑆 𝑠 = −
𝐿(𝑠)

1 + 𝐿 𝑠 𝑁 𝑠

𝑌 𝑠 ≈ −𝐿 𝑠 𝑁 𝑠
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Feedback introduces problem with sensor noise

 Let us put back the sensor noise n(t) to the system.
 Assume R(s) = 0, and the effect of N(s) on Y(s) can be found by considering the expression for 

S(s), the senor signal in the feedback path:

 In open-loop, sensor is not an issue.

 In closed-loop, we want  L(s) to be small in order to have good attenuation of the sensor noise.
 This is in contradiction to the previous two properties.  (We will consider this in more details later.)

𝑆 𝑠 = 𝑁 𝑠 −𝐻 𝑠 𝐺+ 𝑠 𝐺 𝑠 𝑆(𝑠)

⟹ 𝑆 𝑠 =
1

1 + 𝐿 𝑠
𝑁 𝑠

⟹ 𝑌 𝑠 = −𝐿 𝑠 𝑆 𝑠 = −
𝐿(𝑠)

1 + 𝐿 𝑠 𝑁 𝑠



So far, we have been considering the theoretical foundation of a feedback system.  
Let us know consider something that is both real and that you are familiar with.

Plotted here is the speed of two typical DC motors used for our project. These are 
motors from the mini-Segway that I have been personally using.
The plot is the pulse count from the hall effect sensor (in a 100ms window) vs the 
PWM duty cycle driving each motor.

We can make the following observations:
1. The characteristic is relatively linear – that is speed is proportional to PWM 

value.
2. The two motors have more or less the same gradient of around 20 

pulses/sec/PWM%. In other words, if you increase PWM value by 10, you can 
expect the pulse count to increase by 20 in the duration of 1sec.

3. The two motors are not matched.  The BLUE motor is consistently faster (offset) 
from the RED motor by 50 pulses per second.  Or in order for the two motor to 
go at the same speed, the RED motor needs to be driven with an extra 20% in 
PWM!

4. Both motors do not start turning unless the PWM value exceeds around 6 or 7%.
5. Something funny happens to the RED motor in mid-range.  Not sure why!

This characteristic really demonstrate why we may need to use feedback control in 
order to make the motor drive at desired speed independ its own characteristics.
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Practical process - Our DC Motors
 The two DC motors we use on the Segway may have very different characteristics.
 Here are plots of motor speed (in number of pulses per 100msec) vs PWM duty cycle 

for two typical motors:

20%

Gradient ≈	20 pulses/sec/PWM%50



I also test the response of the motors to a step input (going from PWM=0% to 75%).

This shows that both motor behaves approximately to a first order function with an 
exponential rise of time-constant = 0.2sec.

Any first order system responses to a step inout as a exponent rising signal with a 
time constant t, where t  is the time it takes to reach 63% of final value. (Remember 
the RC time constant from Year 1?)
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Step response of the motor
 Here is the plot of the step response of two typical motors.
 The time constant (time it takes to reach 63% of final speed) is around 0.2sec. 



With these information, we can write down the transfer function of the motor.
The dc gain is Km, and it is 20 pulses/sec/PWM%.
The time constant is 0.2sec.

Therefore the motor transfer function (from PWM duty cycle in %) to output speed 
(in pulses/sec) is:

In this discussion, we assume the feedback transfer H(s) = 1.

𝐺 𝑠 =
20

0.2𝑠 + 1
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Model of the motor – G(s)
 We can model the motor as having a transfer function:

𝐺 𝑠 =
𝐾.

𝜏.𝑠 + 1
 Km is the dc gain, which is the gradient of the plot in slide 6 (i.e. the gain of the system 

when s = 0, or steady-state).   Therefore Km = 20 pulses/sec/PWM%
 𝜏. is the time constant of the motor, which is estimated to be around 0.2sec in slide 7.
 Therefore:

 Assuming H(s) = 1, we now put this motor in a feedback loop with a controller Gc(s).

𝐺 𝑠 =
20

0.2𝑠 + 1



Now let us plug this motor into our simple feedback system with the control Gc(s).
Furthermore, let us assume that the controller simply multiply the error signal e(t) 
by a constant gain Kp.  In other words, the drive signal is proportional to the error 
signal.
This is known as “proportional control” and the proportional gain is Kp.
Some algebraic manipulation give us:

We will consider the implication of this result next.

𝑌(𝑠)
𝑅(𝑠)

=
20𝐾1

1 + 20𝐾1 + 0.2𝑠
=
20𝐾1/(1 + 20𝐾1)

1 + 0.2
1 + 20𝐾1

𝑠
=

𝐾2
1 + 𝜏3𝑠

𝐾2 =
20𝐾1

1 + 20𝐾1
𝜏3=

0.2
1 + 20𝐾1
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Proportional feedback
 Let us start with a simple controller with 𝐺% 𝑠 = 𝐾/, where 𝐾/ is a constant.
  From transforms 1 & 6, we get:

 Therefore the closed-loop transfer function is:

𝑌(𝑠)
𝑅(𝑠) =

𝐿(𝑠)
1 + 𝐿(𝑠) =

𝐾/
20

0.2𝑠 + 1
1 + 𝐾/

20
0.2𝑠 + 1

𝑌(𝑠)
𝑅(𝑠) =

20𝐾/
1 + 20𝐾/+0.2𝑠

=
20𝐾//(1 + 20𝐾/)

1 + 0.2
1 + 20𝐾/

𝑠
=

𝐾+
1 + 𝜏%𝑠

𝐾+ =
20𝐾/

1 + 20𝐾/

𝜏%=
0.2

1 + 20𝐾/



Remember:

Let us assume the proportional gain Kp = 5 (not unreasonable), then the steady-
state transfer function:
 Y(0) = 0.99 R(0)

In other words, at steady state, the output tracks the input to 1%.

Also the steady-state error for a step of magnitude A, is also 1% of A – very small.

The sensitivity to perturbation is also reduced by a factor of 100.

Finally, if you rearrange to closed-loop transfer function to the form shown, you can 
see that the closed-loop time constant tC is also reduced from 0.2 to around 0.002, 
also around 100 times.

This is the wonderful world of feedback control!
One word of warning – everything is not as rosy as it may seem.  We have not 
considered an important factor: the stability of the system.  As we increase the 
proportional gain Kp, the system could go unstable if the system is NOT strictly first 
order.  We will consider stability issue later.

𝑌(𝑠)
𝑅(𝑠)

=
20𝐾1

1 + 20𝐾1 + 0.2𝑠
=
20𝐾1/(1 + 20𝐾1)

1 + 0.2
1 + 20𝐾1

𝑠
=

𝐾2
1 + 𝜏3𝑠

𝐾2 =
20𝐾1

1 + 20𝐾1
𝜏3=

0.2
1 + 20𝐾1
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How are things improved with proportional feedback?
 For our system, loop gain is L(s) = 20Kp for s=0.  Assuming Kp = 5, we get a steady-

state gain of:
 

 The steady-state error for a step input of magnitude A (i.e. A * u(t) is:

 Perturbation is also reduced by this factor (see slide 6):

#
𝑌(𝑠)
𝑅(𝑠) #$%

= #
𝐿(𝑠)

1 + 𝐿(𝑠)	 #$%
=

20𝐾/
1 + 20𝐾/

=
100
101 = 0.99

=𝐸 𝑠
&0*

= >
1

1+ 𝐿(𝑠)	 &0*
𝐴 =

1
1+𝐿 0

𝐴 = 0.01𝐴

𝑌(𝑠) = 0.01𝑃(𝑠)



The three main ideas of this lectures are:

1. Negative feedback involves adding a controller and then closing the loop by 
subtracting the output Y(s) to the setpoint R(s).  The subtraction is important to 
ensure that the system is stable.  Positive feedback is when the feedback signal 
is ADDED instead of subtracted, and generally result in an unstable system.

2. Loop gain is the system gain going around the loop when the feedback loop is 
broken.  In our case, the loop gain L(s) is GC(s) G(s).  This is gain is usually much 
larger than 1 for the feedback loop to provide benefits. This is because of 3) 
below.

3. Closed-loop system provide benefits if loop gain is large.  Instead of having a 
large system gain, the gain is being used to reduce undesirable parameters such 
as steady-state error or noise, or disturbances.

Generally, the steady-state error is reduced by a factor of ~L(s).  Further any 
perturbations (disturbances) is also reduced by this factor. 
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Three Big Ideas
1. Closed-loop negative feedback system has the general form (with example):

3. A closed-loop system reduces steady-state errors and impact of perturbation by a 
factor of  (1 + L(s)), where L(s) is the loop gain.

2. Adding the controller GC(s) and closing the loop changes the system transfer function 
from G(s) to:

Y s
R s =

𝐿(𝑠)
1 + 𝐿(𝑠) , where	 𝐿 𝑠 = 𝐺1 𝑠 𝐺(𝑠)


